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The rapid deflection of beams has been used to record the time history of events at many 
timescales.  Conventional, electron-based streak cameras represent the fastest 
embodiment of this concept but are limited by space-charge effects that blur the focused 
beam when high signal amplitudes are present. This forces a tradeoff between temporal 
resolution and dynamic range. A streak camera that deflects a beam of photons would 
eliminate this tradeoff.

Unlike electron beams that are readily manipulated via electromagnetic forces, the 
sustained deflection of an optical beam through many picosecond-scale resolvable spots 
has been historically difficult to achieve.  For each resolvable spot of deflection in the 
far-field, the near-field wavefront must be rapidly tilted by 1 wave.  Nonlinear optical 
mechanisms based on the Kerr effect are ultrafast [1] but also ultraweak, making them 
impractical.  Optically excited carriers have a much stronger influence on the refractive 
index of a semiconductor.  Due to a long-lived (nanosecond scale) electron-hole 
recombination time, they have been often overlooked as a means for devising ultrafast
optical switches.  We demonstrate a deflector concept that achieves picosecond response 
exploiting these strong refractive index changes and actually benefits from long 
recombination times.

The device concept is illustrated in the figure.  A signal beam carrying a temporal 
waveform is coupled into a planar waveguide. When the temporal region of interest is 
fully contained, a normally incident pump beam patterned by a serrated mask imprints a 
one dimensional array of prisms in the waveguide core.  The prisms are generated via 
optical nonlinearities (plasma loading, band filling, and bandgap shrinkage) [2] that turn 
on rapidly and remain latched for the sweep.  The signal then experiences a distributed 
deflection that is finely discretized over a large number of prisms. Because the prism 
array is created while the signal is in transit through it, later portions of the signal 
propagate through more prisms. The signal thus deflects in linear proportion to its time 
delay. The swept beam is focused onto a conventional camera for recording. We term this 
concept Serrated Light Illumination for Deflection-Encoded Recording (SLIDER) [3].

To test this concept, we fabricated a planar waveguide with a GaAs guiding layer, 
surrounded by AlGaAs claddings.  A Ti:sapphire regenerative amplifier provided an 
above-bandgap (800 nm) 150 fs pump pulse that was spatially formatted to a uniform 
fluence of 65 J/cm2. An optical parametric amplifier was used to generate a below-
bandgap (950 nm) signal that was spectrally filtered to 1.4 nm (1 ps transform limited). 
A ring-down test pattern was then generated by a Gires–Tournois cavity with a round-trip 
time of 10 ps. The SLIDER device enabled a single-shot recording of 1 ps impulses 
resolved at 2.5 ps across a record of 50 ps. The dynamic range of the measurement was 
3000:1, limited by the camera. 



The SLIDER technique is potentially scalable to high dynamic range (104) across 
hundreds of picoseconds, making it a credible replacement technology for conventional 
streak cameras. The fabricated device yielded, to our knowledge, the fastest sustained 
optical deflection reported to date.
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The SLIDER concept is based on the optically-induced deflection of an 
optical signal injected into a planar slab waveguide. The deflection is 
caused by a sequential array of prisms that are initially nonexistent, 
then simultaneously created by a sub-ps pump pulse while the signal is 
in transit. To achieve this effect, the pump beam passes first through a 
serrated transmission mask to acquire the prism pattern and then 
imprints the pattern into the refractive index profile of the guiding layer 
through rapid charge carrier excitation. Because the prism array is 
created while the signal is in transit through the pumped region, later 



portions of the signal propagate through more prisms, leading to a 
linear mapping of time to deflection angle.  The swept beam is then 
focused onto a camera that records a spatial representation of the 
temporal signal. The inset displays a single-shot recorded trace of a 
ring down test signal consisting of 1 ps impulses separated by 10 ps. 
A temporal resolution of 2.5 ps was maintained over a record of 50 ps. 
The dynamic range of the measurement was limited by the camera at 
3000:1.
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